平行四边形教案范文集合6篇
作为一无名无私奉献的教育工作者,时常会需要准备好教案,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?以下是小编精心整理的平行四边形教案6篇,希望能够帮助到大家。
平行四边形教案 篇1教学目标
1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。
2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。
3.培养学生独立思考的习惯。
教学重点与难点
重点:探索平行四边形的识别方法。
难点:理解平行四边形的识别方法与应用。
教学准备
方格纸、直尺、图钉、剪刀。
教学过程
一、提问。
1.平行四边形对边( ),对角( ),对角线( )。
2.( )是平行四边形。
二、探索,概括。
1.探索。
(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的`四边形。
步骤1:画一线段AB。
步骤2:平移线段AD到BC。
步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。
(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练习。
如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题
平行四边形教案 篇2教学内容:
书本第43—45页的例题,“试一试”和“想想做做”。
教学目标:
1、使学生在具体的活动中认识平行四边形,知道它的基本特征,能正确判断平行四边形;认识平行四边形的高和底,能正确测量和画出它的高。
2、使学生在观察、操作、比较、判断等活动中,经历探索平行四边形的基本特征的过程,进一步积累认识图形的经验,发展空间观念。
3、使学生体会平行四边形在生活中的广泛应用,培养数学应用意识,增强认识平面图形的兴趣。
教学重、难点:
认识平行四边形的特征,画平行四边形的高。
教学准备:
课件、每组准备小棒、钉子板、方格纸、直尺、三角尺
总课时:
28课时
教学过程:
一、生活引入,形成表象
1、教师出示生活情境图,提问:在这些图片中,都有一个共同的平面图形,是什么?(平行四边形)你能找到吗?
指名学生指一指,课件演示。
2、师:生活中,你还在哪些地方能看到平行四边形?
二、合作交流,探究新知
(一)探究平行四边形的特征
1、小组合作,制作平行四边形
师:你能想办法做出一个平行四边形吗?
提出要求:每个同学在小组学具袋中,任选一种材料制作一个平行四边形,做完之后,再和小组内的同学说一说你的制作方法?
汇报交流(让学生依次在投影上演示,并介绍制作过程)
2、对比猜测平行四边形特征
师:同学们用不同的方法制作了许多大小不一的平行四边形,那平行四边形有什么特征呢?谁来猜测一下?
学生猜测,教师板书或板贴(并在后面打“?”)
3、小组探究,验证平行四边形的特征
师:同学们的猜测无外乎两个方面,一方面是平行四边形边的特点,一方面平行四边形角的特点。(教师同时板贴将学生的猜测进行归类)那么就请同学们拿出你们手中的平行四边形,小组合作,想办法验证黑板上的一点或几点猜测。
学生小组活动,教师巡视指导。
汇报交流总结:平行四边形两组对边分别平行且相等,两组对角分别相等,内角和是360度。
4、判断巩固:想想做做第1题,并让学生说说第二图形不是平行四边形的原因。
(二)自主学习,认识底、高
1、出示一张平行四边形的图,提出:你能量出这个平行四边形上下两条边间的距离吗?拿出手中的作业纸,先用虚线画出表示这组对边距离的线段,再测量。
学生自己尝试后交流。教师指导明确“平行线之间的垂直线段就是平行线之间的距离”。指出这条垂直线段是这个平行四边形的一条高,这是它的底。标出高和底。
2、教师平移此线段,提问是不是平行四边形这个底上的高?有多少条?
3、什么是平行四边形的高?什么是它的底呢?打开书44页自学例题中的内容。
指名汇报,通过自学,你知道了什么?
4、出示试一试,你能量出下面每个平行四边形的高和底各是多少厘米吗?在书上完成。
汇报后,师指最后一个图形的'另外一组底,提问:如果以这条边作底,这个还是它的高吗?为什么?
师小结:平行四边形有两组相对应的底和高。
5、完成想想做做5,先指一指平行四边形的底,再画出这条底边上的高。如果有错误,让学生说说错在哪里。然后让学生说说做平行四边形的高需要注意些什么?(底和高要对应,高画成虚线,画上直角标记)
问:这节课咱们研究了哪种平面图形?(板书课题:认识平行四边形)你学到了哪些知识?关于平行四边形你还想了解哪些知识?
< ……此处隐藏11487个字……图,已知点C为线段AB上一点,△ACM、△CBN是等边三角形,求证:AN=BM.说明及要求:本题是《几何》第二册几15中第13题,现要求:
(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上,请对照原题图在图中画出符合要求的图形(不写作法,保留作图痕迹).
(2)在①所得的图形中,结论“AN=BM”是否还成立?若成立,请证明;若不成立,请说明理由.
(3)在①得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并证明你的结论.
10.如图,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是 cm2.
11.如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是 .
(绍兴市中考题)
12.如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则PA+PB+PC与AB+AC的大小关系是( )
A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.无法确定
13.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为( )
A. B. C .5 D.6
(20xx年武汉市选拔赛试题)
14.如图,已知△ABC中,AB=AC,D为AB上一点,E为AC 延长线上一点,BD=CE,连DE,求证:DE>DC.
15.如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满 ,求△ABC的面积.
16.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米? (“五羊杯”竞赛题)
17.如图,△ABC是等腰直角三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离都等于1,将△ABC绕 点O顺时针旋转45°,得△A1BlC1 ,两三角形公共部分为多边形KLMNPQ.
(1)证明:△AKL、△BMN、△CPQ都是等腰直角三角形;
(2)求△ABC与△A1BlC1公共部分的面积. (山东省竞赛题)
18.(1)操作与证明:如图1,O是边长为a的正方形ACBD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值.
(2)尝试与思考:如图2,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或正五边形的中心O点处,并将纸板绕O点旋转, 当扇形纸板的圆心角为 时,正三角形的边被纸板覆盖部分的总长度为定值a;当扇形纸板的圆心角为 时,正五边形的边被纸板覆盖部分的总长度也为定值a.
(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为 时,正n边形的边被纸板覆盖部分 的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系;若不是定值,请说明理由.
平行四边形教案 篇6教学目标
1.能够从图中全面感知平行四边形现象,体会平行四边形在生活情景中的存在。,
2.通过观察、操作等活动,认识平行四边形的一些特征。
3.经历探索平行四边形的过程,了解它的基本特征,进一步发展空间观念。
教学重点
通过观察、操作等活动,认识平行四边形的一些特征
教学难点
经历探索平行四边形的过程,了解它的基本特征
教学过程
激发兴趣
一、(出示主题图)
我们已经认识了平行四边形,请同学们仔细
观察主题图,图中都有些什么物体,这些物体
都反映出一些什么现象?
这些现象正是我们本单元所要研究和学习
的平行四边形。(板书课题)
仔细观察
小组活动
探索、感知
探索新知 1.拉一拉。
师:拿出你们准备的'长方形木框,用手捏住相对的两个角,向相反的方向拉动,边拉动,边观察你有什么发现?与原来的长方形有什么相同和不同?
生:可以拉成不一样的平行四边形。……
师:说明平行四边形易变形。(板书:易变形)
2.画一画,比一比 。
(拉到一定的位置不变)师将拉成的平行四边形画在黑板上。学生将拉成的平行四边形画在纸上。 观察平行四边形,你发现了什么?
生:相对的两条边互相平行……
抽生演示测量两组对边分别平行。
师课件演示两组对边分别平行。
师小结:两组对边分别平行平行的四边形叫做平行四边形。
3.量一量,填一填,说一说。
师:先给平行四边形的边和角编上号。每位同学都用直尺量一量平行四边形的四条边,用三角板量一量四个角,然后填表。
长边 长边 短边 短边 边 ∠1 ∠2 ∠3 ∠4 角
观察表格,你有什么发现?
将自己的发现在小组交流,然后讨论平行四边形都有哪些特点?作好记录。
全班汇报。你们组发现了平行四边形都有哪些特点?
师:几组同学的汇报都有哪些相同的地方?你们有吗?
平行四边形都有哪些特征?
总结:1.两组对边分别相等。2.两组对角分别相等。
3.四个内角的和是360
学生操作
抽生汇报
先独立思考,在小组讨论。
独立观察后,同桌交流。然后全班交流。
学生操作,先拉平行四边形,再画。
独立观察
小组交流
抽生汇报
学生发言,其余注意倾听。
独立思考,汇报。
1组:我们发现左右两边的长都是……,上下两边的长都是……
一组对角都是……,另一组对角都是……
2组:……
课堂小结
今天这节课我们学习了些什么?你都有哪些收获?